JAN KUREK and WŁODZIMIERZ M. MIKULSKI

The natural operators lifting vector fields
to the bundle of affinors

Abstract. All natural operators $T \mapsto T(T \otimes T^*)$ lifting vector fields X from n-dimensional manifolds M to vector fields $B(X)$ on the bundle of affinors $TM \otimes T^*M$ are described.

1. Introduction. In [3], the second author studied the problem how a 1-form ω on an n-manifold M induces a 1-form $B(\omega)$ on $TM \otimes T^*M$. This problem was reflected in natural operators $B : T^* \mapsto T^*(T \otimes T^*)$ over n-manifolds. It is proved that the set of natural operators $T^* \mapsto T^*(T \otimes T^*)$ over n-manifolds is a free $C^\infty(\mathbb{R}^n)$-module of dimension $2n$, and there is presented a basis of this module.

In this note we study a similar problem how a vector field X on an n-manifold M induces a vector field $B(X)$ on $TM \otimes T^*M$. This problem is reflected in natural operators $T \mapsto T(T \otimes T^*)$ over n-manifolds. We prove that the set of natural operators $T \mapsto T(T \otimes T^*)$ over n-manifolds is a free $C^\infty(\mathbb{R}^n)$-module of dimension $n + 1$. We construct a basis of this module.

We recall that a natural operator $B : T \mapsto T(T \otimes T^*)$ over n-manifolds is an \mathcal{M}_{f_n}-invariant family of regular operators

$$B : \mathcal{X}(M) \rightarrow \mathcal{X}(TM \otimes T^*M)$$

2000 Mathematics Subject Classification. 58A20, 53A55.

Key words and phrases. Natural bundles, natural operators.
for all n-manifolds M. The invariance means that if vector fields X_1 on M and X_2 on N are φ-related for some local diffeomorphism $\varphi : M \to N$ between n-manifolds then the vector fields $B(X_1)$ and $B(X_2)$ are $T\varphi \otimes T^*\varphi$-related. The regularity means that B transforms smoothly parametrized families of vector fields into smoothly parametrized families of vector fields.

From now on x^1, \ldots, x^n are the usual coordinates on \mathbb{R}^n and $\partial_i = \frac{\partial}{\partial x^i}$ for $i = 1, \ldots, n$ are the canonical vector fields on \mathbb{R}^n.

All manifolds and maps are assumed to be of class C^∞.

2. Examples of natural operators $T \leadsto T(T \otimes T^*)$.

Example 2.1. Let X be a vector field on an n-manifold M. Let $T \otimes T^*X$ be the flow lifting of X to $TM \otimes T^*M$. More precisely, if φ_t is the flow of X, then $T\varphi_t \otimes T^*\varphi_t$ is the flow of $T \otimes T^*X$. The correspondence $T \otimes T^* : T \leadsto T(T \otimes T^*)$ given by $X \to T \otimes T^*X$ is a natural operator (called the flow operator) in question.

Example 2.2. For $k = 0, \ldots, n-1$ we have the canonical vector field L^k on $TM \otimes T^*M$ such that

$$L^k(A) = \left. \frac{d}{dt} \right|_0 (A + tA^k), \quad A \in \text{End}(T_xM) = T_xM \otimes T_x^*M, \quad x \in M,$$

where A^k is the k-th power of A ($A^0 = id$). The vector field L^k will be called the k-th Liouville vector field on $TM \otimes T^*M$ (L^1 is the classical Liouville vector field on $TM \otimes T^*M$). The correspondence $L^k : T \leadsto T(T \otimes T^*)$ is a natural operator in question.

3. The $C^\infty(\mathbb{R}^n)$-module of natural operators $T \leadsto T(T \otimes T^*)$ over n-manifolds. If $L : V \to V$ is an endomorphism of an n-dimensional vector space V then $a_1(L), \ldots, a_n(L)$ denote the coefficient of the characteristic polynomial

$$W_L(\lambda) = \det(\lambda id_V - L) = \lambda^n + a_1(L)\lambda^{n-1} + \cdots + a_{n-1}(L)\lambda + a_n(L).$$

Thus for every n-manifold M we have maps $a_1, \ldots, a_n : TM \otimes T^*M \to \mathbb{R}$ (as $T_xM \otimes T_x^*M = \text{End}(T_xM)$).

The vector space of all natural operators $B : T \leadsto T(T \otimes T^*)$ over n-manifolds is additionally a module over the algebra $C^\infty(\mathbb{R}^n)$ of smooth maps $\mathbb{R}^n \to \mathbb{R}$. Actually given a smooth map $f : \mathbb{R}^n \to \mathbb{R}$ and a natural operator $B : T \leadsto T(T \otimes T^*)$ we have natural operator $fB : T \leadsto T(T \otimes T^*)$ given by

$$(fB)(X) = f(a_1, \ldots, a_n)B(X)$$

for any vector field X on an n-manifold M.
4. The main result. The main result of this short note is the following classification theorem.

Theorem 1. The flow operator $T \otimes T^*$ together with the k-th Liouville operators L^k for $k = 0, \ldots, n - 1$ form a basis of the $C^\infty(\mathbb{R}^n)$-module of natural operators $T \rightsquigarrow T(T \otimes T^*)$ over n-manifolds.

The proof of Theorem 1 will occupy the rest of this note.

5. The result of J. Dębecki. The vector space $\text{End}(\mathbb{R}^n)$ of all endomorphisms of \mathbb{R}^n is a $\text{GL}(n)$-space because of the usual (adjoint) action of $\text{GL}(n)$ on $\text{End}(\mathbb{R}^n)$.

We have the following result of J. Dębecki.

Proposition 1 ([1]). Any $\text{GL}(n)$-equivariant map $C : \text{End}(\mathbb{R}^n) \rightarrow \text{End}(\mathbb{R}^n)$

is of the form

$$C(A) = \sum_{k=0}^{n-1} f_k(a_1(A), \ldots, a_n(A))A^k$$

for some uniquely determined maps $f_k : \mathbb{R}^n \rightarrow \mathbb{R}$.

6. The vertical type natural operators $B : T \rightsquigarrow T(T \otimes T^*)$ over n-manifolds. A natural operator $B : T \rightsquigarrow T(T \otimes T^*)$ is of vertical type if $B(X)$ is a vertical vector field for any vector field X on a n-manifold.

Using Proposition 1 we prove the following fact.

Proposition 2. The $C^\infty(\mathbb{R}^n)$-submodule of vertical type natural operators $B : T \rightsquigarrow T(T \otimes T^*)$ over n-manifolds is free and n-dimensional. The k-th Liouville operators L^k for $k = 0, \ldots, n - 1$ form a basis of this module.

Proof. Let $B : T \rightsquigarrow T(T \otimes T^*)$ be a vertical type natural operator over n-manifolds. Because of the naturality and the Frobenius theorem this operator is uniquely determined by the restriction of vertical vector field $B(\partial_1)$ to the fiber $\text{End}(T_0 \mathbb{R}^n) = T_0 \mathbb{R}^n \times T_0^* \mathbb{R}^n$.

Using the naturality of B with respect to the homotheties $tid_{\mathbb{R}^n}$ for $t \neq 0$ we see that

$$B(\partial_1)|_{\text{End}(T_0 \mathbb{R}^n)} = B(t\partial_1)|_{\text{End}(T_0 \mathbb{R}^n)}$$

for $t \neq 0$. Putting $t \rightarrow 0$ we see that

$$B(\partial_1)|_{\text{End}(T_0 \mathbb{R}^n)} = B(0)|_{\text{End}(T_0 \mathbb{R}^n)}.$$

Because of the naturality of $B(0)$ with respect to linear automorphisms of \mathbb{R}^n we have a $\text{GL}(n)$-equivariant map

$$C : \text{End}(T_0 \mathbb{R}^n) \rightarrow \text{End}(T_0 \mathbb{R}^n)$$
given by
\[B(0)(A) = \frac{d}{dt} \bigg|_0 (A + tC(A)) \]
for \(A \in \text{End}(T_0\mathbb{R}^n) \).

By Proposition 1 we have that
\[C(A) = \sum_{k=0}^{n-1} f_k(a_1(A), \ldots, a_n(A))A^k \]
for some uniquely determined maps \(f_k : \mathbb{R}^n \to \mathbb{R} \). Then
\[B(\partial_1)(A) = \sum_{k=0}^{n-1} f_k(a_1(A), \ldots, a_n(A))L^k(A) \]
for all \(A \in \text{End}(T_0\mathbb{R}^n) \). That is why \(B = \sum_{k=0}^{n-1} f_kL^k \), as well. \(\square \)

7. Proof of Theorem 1. It is clear that Theorem 1 will be proved after proving the following fact.

Proposition 3. Let \(B : T \to T(T \otimes T^*) \) be a natural operator over \(n \)-manifolds. Then there exists a unique map \(f : \mathbb{R}^n \to \mathbb{R} \) such that \(B - fT \otimes T^* \) is a vertical type operator.

Let \(\pi : T\mathbb{R}^n \otimes T^*\mathbb{R}^n \to \mathbb{R}^n \) be the bundle projection.

Lemma 1. There exist unique maps \(f_k \in C^\infty(\mathbb{R}^n) \) such that
\[T\pi(B(w^\circ)(A)) = \sum_{k=0}^{n-1} f_k(a_1(A), \ldots, a_n(A))A^k(w) \]
for \(A \in \text{End}(T_0\mathbb{R}^n) = T_0\mathbb{R}^n \otimes T_0^*\mathbb{R}^n \) and \(w \in T_0\mathbb{R}^n \), where \(w^\circ \) is the "constant" vector field on \(\mathbb{R}^n \) with \(w^\circ_0 = w \).

Proof. By the invariance of \(B \) with respect to the homotheties \(tid_{\mathbb{R}^n} \) for \(t \neq 0 \) we have the homogeneity condition
\[T\pi(B((tw)^\circ)(A)) = tT\pi(B(w^\circ))(A). \]
Then by the homogeneous function theorem, [2], \(T\pi(B(w^\circ))(A) \) depends linearly on \(w \).

So, we can define a map \(C : \text{End}(T_0\mathbb{R}^n) \to \text{End}(T_0\mathbb{R}^n) \) by
\[C(A)(w) = T\pi(B(w^\circ)(A)) \]
for all \(A \in \text{End}(T_0\mathbb{R}^n) \) and \(w \in T_0\mathbb{R}^n \).

Because of the naturality of \(B \) with respect to linear automorphisms of \(\mathbb{R}^n \), \(C \) is \(GL(n) \)-equivariant. Then applying Proposition 1 we end the proof. \(\square \)

Lemma 2. Let \(B : T \to T(T \otimes T^*) \) be as in Lemma 1. Let \(f_0, \ldots, f_{n-1} \) be the maps from Lemma 1. Then \(f_j = 0 \) for \(j = 1, \ldots, n - 1 \).
Proof. Consider $j = 1, \ldots, n-1$. Let $b = (b_1, \ldots, b_n) \in \mathbb{R}^n$. Let $A \in \text{End}(T_0\mathbb{R}^n)$ be such that $A(\partial_i(0)) = \partial_i+1(0)$ for $i = 1, \ldots, n-1$ and $A(\partial_n(0)) = -b_n\partial_1(0) - \ldots - b_1\partial_n(0)$. Then $a_i(A) = b_i$ for $i = 1, \ldots, n$.

Let $\varphi_t = (x^1, \ldots, x^j+1+tx^j+1, \ldots, x^n)$ be the flow of $\partial_j+1+x^j+1\partial_j+1$ near $0 \in \mathbb{R}^n$.

Since $T_0\varphi_1 \circ A \circ T_0\varphi_1^{-1} \neq A$ (as the left hand side evaluated at $\partial_j(0)$ is equal to $2\partial_j+1(0)$ and the right hand side evaluated in the same vector $\partial_j(0)$ is equal to $\partial_j+1(0)$), we have

$$T \otimes T^*(x^j+1\partial_j+1)(A) \neq 0.$$

Using the Zajtz theorem [4], since $(\partial_j+1+x^j+1\partial_j+1)(0) = \partial_j+1(0) \neq 0$, we find a diffeomorphism $\eta: \mathbb{R} \to \mathbb{R}$ such that

$$j_0^1 \psi = \text{id}$$

and

$$\psi^*\partial_j+1 = \partial_j+1 + x^j+1\partial_j+1$$

near $0 \in \mathbb{R}^n$, where $\psi(x^1, \ldots, x^n) = (x^1, \ldots, x^j, \eta(x^j+1), \ldots, x^n)$.

Clearly ψ preserves ∂_1. Because of (2), ψ preserves A. Then ψ preserves $B(\partial_j)(A)$.

Because of (2), ψ preserves any vertical vector tangent to $T\mathbb{R}^n \otimes T^*\mathbb{R}^n$ at A. Moreover, ψ preserves all ∂_l for $l = 1, \ldots, n$ with $l \neq j+1$. By (3), ψ sends $T \otimes T^*(\partial_j+1)(A)$ into $T \otimes T^*(\partial_j+1+x^j+1\partial_j+1)(A)$. Then ψ sends

$$B(\partial_j)(A) = \sum_{k=0}^{n-1} f_k(a_1(A), \ldots, a_n(A))T \otimes T^*(\partial_k+1)(A) + \text{some vertical vector}$$

into $B(\partial_j)(A) + f_j(b)T \otimes T^*(x^j+1\partial_j+1)(A)$.

Then because of (1), we have $f_j(b) = 0$, as well. \qed

Proof of Proposition 3. Because of Lemmas 1 and 2 we have

$$B(\partial_j)(A) = f_0(a_1(A), \ldots, a_n(A))T \otimes T^*(\partial_j)(A) + \text{some vertical vector}$$

for any $A \in \text{End}(T_0\mathbb{R}^n)$. Since B is determined by $B(\partial_1)$ over 0, the proof of Proposition 3 is complete. \qed

References

Jan Kurek
Institute of Mathematics
Maria Curie-Skłodowska University
pl. Marii Curie-Skłodowskiej 1
20-031 Lublin, Poland
e-mail: kurek@hektor.umcs.lublin.pl

Włodzimierz M. Mikulski
Institute of Mathematics
Jagiellonian University
ul. Łojasiewicza 6
30-348 Kraków, Poland
e-mail: mikulski@im.uj.edu.pl

Received January 4, 2008