MOHAMED K. AOUF and RABHA M. EL-ASHWAH

Inclusion properties of certain subclass
of analytic functions defined
by multiplier transformations

Abstract. Let A denote the class of analytic functions with normalization $f(0) = f'(0) - 1 = 0$ in the open unit disk $U = \{z : |z| < 1\}$. Set

$$f_{m,\lambda,\ell}(z) = z + \sum_{k=2}^{\infty} \left(\frac{\ell + 1 + \lambda(k-1)}{\ell + 1} \right)^m z^k \quad (z \in U; m \in \mathbb{N}_0; \lambda \geq 0; \ell \geq 0),$$

and define $f_{m,\lambda,\ell,\mu}$ in terms of the Hadamard product

$$f_{m,\lambda,\ell}(z) \ast f_{m,\lambda,\ell,\mu}(z) = \frac{z}{(1-z)^\mu} \quad (z \in U; \mu > 0).$$

In this paper, we introduce several new subclasses of analytic functions defined by means of the operator $I_{m,\lambda,\ell,\mu}(f)(z) = f_{m,\lambda,\ell,\mu}(z) \ast f(z) \quad (f \in A; m \in \mathbb{N}_0; \lambda \geq 0; \ell \geq 0; \mu > 0)$. Inclusion properties of these classes and the classes involving the generalized Libera integral operator are also considered.

1. Introduction. Let A denote the class of functions of the form:

$$(1.1) \quad f(z) = z + \sum_{k=2}^{\infty} a_k z^k$$

which are analytic in the open unit disk $U = \{z : |z| < 1\}$. If f and g are analytic in U, we say that f is subordinate to g, written $f(z) \prec g(z)$, if

2000 Mathematics Subject Classification. 30C45.

Key words and phrases. Subordination, analytic, multiplier transformation, Libera integral operator.
there exists an analytic function \(w \) in \(U \) with \(w(0) = 0 \) and \(|w(z)| < 1 \) for \(z \in U \) such that \(f(z) = g(w(z)) \). For \(0 \leq \eta < 1 \), we denote by \(S^\ast(\eta) \), \(K(\eta) \) and \(C \) the subclasses of \(A \) consisting of all analytic functions which are, respectively, starlike of order \(\eta \), convex of order \(\eta \) and close-to-convex in \(U \) (see, e.g. Srivastava and Owa [18]).

For \(m \in \mathbb{N}_0 = \mathbb{N} \cup \{0\} \), where \(\mathbb{N} = \{1, 2, \ldots\} \), \(\lambda \geq 0 \) and \(\ell \geq 0 \), Cătaş [3] defined the multiplier transformations \(I^m(\lambda, \ell) \) on \(A \) by the following infinite series

\[
I^m(\lambda, \ell) f(z) = z + \sum_{k=2}^{\infty} \frac{(\ell + 1 + \lambda(k - 1))}{\ell + 1} a_k z^k.
\]

It follows from (1.2) that

\[
I^0(\lambda, \ell) = f(z),
\]

\[
(\ell + 1) I^2(\lambda, \ell) f(z) = (\ell + 1 - \lambda) I^1(\lambda, \ell) f(z) + \lambda z (I^1(\lambda, \ell) f(z))',
\]

\[
\lambda > 0, \quad \text{and}
\]

\[
I^{m_1}(\lambda, \ell)(I^{m_2}(\lambda, \ell) f(z)) = I^{m_2}(\lambda, \ell)(I^{m_1}(\lambda, \ell) f(z))
\]

for all integers \(m_1 \) and \(m_2 \).

We note that:

(i) \(I^m(1, \ell) = I^m \) (see Cho and Srivastava [4] and Cho and Kim [5]);

(ii) \(I^m(\lambda, 0) = D^m_\lambda \) (\(m \in \mathbb{N}_0; \lambda \geq 0 \)) (see Al-Oboudi [1]);

(iii) \(I^m(1, 0) = D^m \) (\(m \in \mathbb{N}_0 \)) (see Sălăgean [17]);

(iv) \(I^m(1, 1) = I_m \) (see Uralegaddi and Somanatha [19]).

Let \(S \) be the class of all functions \(\varphi \) which are analytic and univalent in \(U \) and for which \(\varphi(U) \) is convex and \(\varphi(0) = 1 \) and \(\text{Re}\{\varphi(z)\} > 0 \) (\(z \in U \)).

Making use of the principle of subordination between analytic functions, we introduce the subclasses \(S^\ast(\eta; \varphi) \), \(K(\eta; \varphi) \) and \(C(\eta, \delta; \varphi, \psi) \) of the class \(A \) for \(0 \leq \eta, \delta < 1 \) and \(\varphi, \psi \in S \) (cf., e.g., [6], [8] and [12]), which are defined as follows:

\[
S^\ast(\eta; \varphi) = \left\{ f \in A : \frac{1}{1 - \eta} \left(\frac{zf'(z)}{f(z)} - \eta \right) \prec \varphi(z), \ z \in U \right\},
\]

\[
K(\eta; \varphi) = \left\{ f \in A : \frac{1}{1 - \eta} \left(1 + \frac{zf''(z)}{f'(z)} - \eta \right) \prec \varphi(z), \ z \in U \right\},
\]

and

\[
C(\eta, \delta; \varphi, \psi) = \left\{ f \in A : \exists g \in S^\ast(\eta, \varphi) \text{ s.t.} \right. \frac{1}{1 - \delta} \left(\frac{zf'(z)}{g(z)} - \delta \right) \prec \psi(z), \ z \in U \right\}.
\]
We note that, for special choices for the functions \(\varphi \) and \(\psi \) in the above definitions we obtain the well-known subclasses of \(A \). For examples, we have

(i) \(S^* \left(\eta; \frac{1+z}{1-z} \right) = S^*(\eta) \quad (0 \leq \eta < 1) \),

(ii) \(K \left(\eta; \frac{1+z}{1-z} \right) = K(\eta) \quad (0 \leq \eta < 1) \)

and

(iii) \(C \left(0, 0; \frac{1+z}{1-z} : \frac{1+z}{1-z} \right) = C \).

Setting \(f_{\lambda, \ell}^{\mu, z}(z) = z + \sum_{k=2}^{\infty} \left[\frac{\ell + 1 + \lambda(k-1)}{\ell + 1} \right]^{m} z^{k} \quad (m \in N_0, \lambda \geq 0, \ell \geq 0) \),

we define a new function \(f_{\lambda, \ell}^{\mu, z}(z) \) in terms of the Hadamard product (or convolution) by:

\[
(1.6) \quad f_{\lambda, \ell}^{\mu, z}(z) * f_{\lambda, \ell}^{\mu, z}(z) = \frac{z}{(1-z)^{\mu}} \quad (\mu > 0; z \in U).
\]

Then, motivated essentially by the Choi–Saigo–Srivastava operator [6] (see also [10], [11], [14], and [15]), we now introduce the operators \(f_{\lambda, \ell}^{\mu, z}(z) : A \rightarrow A \), which are defined here by

\[
(1.7) \quad I_{\lambda, \ell}^{\mu, z}(f)(z) = f_{\lambda, \ell}^{\mu, z}(z)
\]

\((f \in A; m \in N_0; \lambda \geq 0; \ell \geq 0; \mu > 0) \). For a function \(f(z) \in A \), given by

\[
(1.8) \quad I_{\lambda, \ell}^{\mu, z}(f)(z) = z + \sum_{k=2}^{\infty} \left[\frac{\ell + 1 + \lambda(k-1)}{\ell + 1} \right]^{m} \frac{(\mu)_{k-1}}{(1)_{k-1}} a_k z^k
\]

\((m \in N_0; \lambda \geq 0; \ell \geq 0; z \in U) \).

We note that:

(i) \(I_{1, 0}^{1, 0}(f)(z) = f(z) \) and \(I_{1}^{0, 2}(f)(z) = z f'(z) \),

and

(ii) \(I_{s, \ell}^{\mu, z}(f)(z) = I_{\ell}^{s, \mu}(f)(z) \) \((s \in R; \) see Cho and Kim [5]).

In view of (1.8), we obtain the following relations:

\[
(1.9) \quad \lambda z (I_{\lambda, \ell}^{\mu, z}(f)(z))' = (\ell + 1) I_{\lambda, \ell}^{\mu, z}(f)(z) - [\lambda - (\ell + 1)] I_{\lambda, \ell}^{\mu, z}(f)(z)
\]

\((f \in A; m \in N_0; \lambda > 0; \ell \geq 0; \mu > 0) \) and

\[
(1.10) \quad z (I_{\lambda, \ell}^{\mu, z}(f)(z))' = \mu I_{\lambda, \ell}^{\mu, z+1}(f)(z) - (\mu - 1) I_{\lambda, \ell}^{\mu, z}(f)(z)
\]
Next, by using the operator $I_{\lambda,\ell,\mu}^m$, we introduce the following classes of analytic functions for $\varphi, \psi \in S$, $m \in N_0$, $\lambda \geq 0$, $\ell \geq 0$, $\mu > 0$ and $0 \leq \eta$, $\delta < 1$:

$$S_{\lambda,\ell,\mu}^m(\eta; \varphi) = \{ f \in A : I_{\lambda,\ell,\mu}^m f(z) \in S(\eta; \varphi) \},$$

$$K_{\lambda,\ell,\mu}^m(\eta; \varphi) = \{ f \in A : I_{\lambda,\ell,\mu}^m f(z) \in K(\eta; \varphi) \}$$

and

$$C_{\lambda,\ell,\mu}^m(\eta, \delta; \varphi, \psi) = \{ f \in A : I_{\lambda,\ell,\mu}^m f(z) \in C(\eta, \delta; \varphi, \psi) \}.$$

We also have

$$f(z) \in K_{\lambda,\ell,\mu}^m(\eta; \varphi) \iff zf'(z) \in S_{\lambda,\ell,\mu}^m(\eta; \varphi).$$

In particular, we set

$$S_{\lambda,\ell,\mu}^m(\eta; \frac{1 + Az}{1 + Bz})^\alpha = S_{\lambda,\ell,\mu}^m(\eta; A, B, \alpha)$$

and

$$K_{\lambda,\ell,\mu}^m(\eta; \frac{1 + Az}{1 + Bz})^\alpha = K_{\lambda,\ell,\mu}^m(\eta; A, B, \alpha)$$

In this paper, we investigate several inclusion properties of the classes $S_{\lambda,\ell,\mu}^m(\eta; \varphi)$, $K_{\lambda,\ell,\mu}^m(\eta; \varphi)$ and $C_{\lambda,\ell,\mu}^m(\eta, \delta; \varphi, \psi)$ associated with the operator $I_{\lambda,\ell,\mu}^m$. Some applications involving these and other classes of integral operators are also considered.

2. Inclusion properties involving the operator $I_{\lambda,\ell,\mu}^m$. The following lemmas will be required in our investigation.

Lemma 1 ([7]). Let φ be convex, univalent in U with $\varphi(0) = 1$ and $\Re \{ \beta \varphi(z) + \nu \} > 0$ ($\beta, \nu \in C$). If p is analytic in U with $p(0) = 1$, then

$$p(z) + \frac{zp'(z)}{\beta p(z) + \nu} \prec \varphi(z) \quad (z \in U)$$

implies that

$$p(z) \prec \varphi(z) \quad (z \in U).$$

Lemma 2 ([13]). Let φ be convex, univalent in U and w be analytic in U with $\Re \{ w(z) \} \geq 0$. If $p(z)$ is analytic in U and $p(0) = \varphi(0)$, then

$$p(z) + w(z)p'(z) \prec \varphi(z) \quad (z \in U)$$

implies that

$$p(z) \prec \varphi(z) \quad (z \in U).$$

At first, with the help of Lemma 1, we prove the following theorem.
\textbf{Theorem 1.} Let $m \in N_0$, $\lambda > 0$, $\ell \geq 0$, $\ell + 1 > \lambda$ and $\mu \geq 1$. Then
\[S_{\lambda, \ell, \mu + 1}^m(\eta; \varphi) \subset S_{\lambda, \ell, \mu}^m(\eta; \varphi) \subset S_{\lambda, \ell, \mu}^{m+1}(\eta; \varphi) \]
$(0 \leq \eta < 1; \phi \in S)$.

\textbf{Proof.} First of all, we will show that
\[S_{\lambda, \ell, \mu + 1}^m(\eta; \varphi) \subset S_{\lambda, \ell, \mu}^m(\eta; \varphi). \]
Let $f \in S_{\lambda, \ell, \mu + 1}^m(\eta; \varphi)$ and put
\begin{equation}
(2.1) \quad p(z) = \frac{1}{1 - \eta} \left(\frac{z(I_{\lambda, \ell, \mu + 1}^m f(z))'}{I_{\lambda, \ell, \mu + 1}^m f(z)} - \eta \right),
\end{equation}
where $p(z)$ is analytic in U with $p(0) = 1$. Using (1.10) and (2.1), we obtain
\begin{equation}
(2.2) \quad \frac{I_{\lambda, \ell, \mu + 1}^m f(z)}{I_{\lambda, \ell, \mu}^m f(z)} = (1 - \eta)p(z) + \eta + (\mu - 1).
\end{equation}
Differentiating (2.2) logarithmically with respect to z, we obtain
\begin{equation}
(2.3) \quad \frac{1}{1 - \eta} \left(\frac{z(I_{\lambda, \ell, \mu + 1}^m f(z))'}{I_{\lambda, \ell, \mu + 1}^m f(z)} - \eta \right) = p(z) + \frac{zp(z)}{(1 - \eta)p(z) + \eta + (\mu - 1)}.
\end{equation}
$(z \in U)$. Applying Lemma 1 to (2.3), it follows that $p \prec \varphi$, that is $f \in S_{\lambda, \ell, \mu}^m(\eta; \varphi)$.

To prove the second part, let $f \in S_{\lambda, \ell, \mu}^m(\eta; \varphi)$ and put
\[h(z) = \frac{1}{1 - \eta} \left(\frac{z(I_{\lambda, \ell, \mu}^m f(z))'}{I_{\lambda, \ell, \mu}^m f(z)} - \eta \right), \]
where h is analytic in U with $h(0) = 1$. Then, by using the arguments similar to those detailed above with (1.9), it follows that $h \prec \varphi$. This completes the proof of Theorem 1. \hfill \Box

\textbf{Theorem 2.} Let $m \in N_0$, $\lambda > 0$, $\ell \geq 0$, $\ell + 1 > \lambda$ and $\mu \geq 1$. Then
\[K_{\lambda, \ell, \mu + 1}^m(\eta; \varphi) \subset K_{\lambda, \ell, \mu}^m(\eta; \varphi) \subset K_{\lambda, \ell, \mu}^{m+1}(\eta; \varphi) \]
$(0 \leq \eta < 1; \phi \in S)$.

\textbf{Proof.} Applying (1.11) and Theorem 1, we observe that
\[
\begin{align*}
f & \in K_{\lambda, \ell, \mu + 1}^m(\eta; \varphi) \iff I_{\lambda, \ell, \mu + 1}^m f(z) \in K(\eta; \varphi) \iff z(I_{\lambda, \ell, \mu + 1}^m f(z))' \in S^s(\eta; \varphi) \\
& \iff I_{\lambda, \ell, \mu}^m (zf'(z)) \in S^s(\eta; \varphi) \\
& \iff zf'(z) \in S_{\lambda, \ell, \mu}^m(\eta; \varphi) \\
& \iff zf'(z) \in S_{\lambda, \ell, \mu}^{m+1}(\eta; \varphi) \\
& \iff I_{\lambda, \ell, \mu}^m(zf'(z)) \in S^m(\eta; \varphi)
\end{align*}
\]
\[\Leftrightarrow z(I_{\lambda,\ell,\mu}^m(zf(z)))' \in S^m(\eta; \varphi) \]
\[\Leftrightarrow I_{\lambda,\ell,\mu}^m(f(z)) \in K(\eta; \varphi) \]
\[\Leftrightarrow f(z) \in K_{\lambda,\ell,\mu}^m(\eta; \varphi) \]

and

\[f(z) \in K_{\lambda,\ell,\mu}^m(\eta; \varphi) \Leftrightarrow zf'(z) \in S^{*}(\eta; \varphi) \]
\[\Rightarrow zf'(z) \in S^{m+1}_{\lambda,\ell,\mu}(\eta; \varphi) \]
\[\Leftrightarrow z(I_{\lambda,\ell,\mu}^{m+1}(zf(z)))' \in S^{*}(\eta; \varphi) \]
\[\Leftrightarrow I_{\lambda,\ell,\mu}^{m+1}(zf(z)) \in K(\eta; \varphi) \]
\[\Leftrightarrow zf(z) \in K_{\lambda,\ell,\mu}^{m+1}(\eta; \varphi), \]

which evidently proves Theorem 2.

\[\square \]

Taking \(\varphi(z) = \left(\frac{1 + Az}{1 + Bz} \right)^{\alpha} \) \((-1 \leq B < A \leq 1; 0 < \alpha \leq 1; z \in U)\) in Theorem 1 and Theorem 2, we obtain the following corollary.

Corollary 1. Let \(m \in N_0, \lambda > 0, \ell \geq 0, \ell + 1 > \lambda \) and \(\mu \geq 1 \). Then

\[S_{\lambda,\ell,\mu+1}^m(\eta; A, B; \alpha) \subset S_{\lambda,\ell,\mu}^m(\eta; A, B; \alpha) \subset S_{\lambda,\ell,\mu}^{m+1}(\eta; A, B; \alpha) \]

\((0 \leq \mu < 1; -1 \leq B < A \leq 1; 0 < \alpha \leq 1), \) and

\[K_{\lambda,\ell,\mu+1}^m(\eta; A, B; \alpha) \subset K_{\lambda,\ell,\mu}^m(\eta; A, B; \alpha) \subset K_{\lambda,\ell,\mu}^{m+1}(\eta; A, B; \alpha) \]

\((0 \leq \mu < 1; -1 \leq B < A \leq 1; 0 < \alpha \leq 1). \)

By using Lemma 2, we obtain the following inclusion relation of the class \(C_{\lambda,\ell,\mu}^m(\eta, \delta; \varphi, \psi) \).

Theorem 3. Let \(m \in N_0, \lambda > 0, \ell \geq 0, \ell + 1 > \lambda \) and \(\mu \geq 1 \). Then

\[C_{\lambda,\ell,\mu+1}^m(\eta, \delta; \varphi, \psi) \subset C_{\lambda,\ell,\mu}^m(\eta, \delta; \varphi, \psi) \subset C_{\lambda,\ell,\mu}^{m+1}(\eta, \delta; \varphi, \psi) \]

\((0 \leq \eta; \delta < 1; \varphi, \psi \in S). \)

Proof. We begin by proving that

\[C_{\lambda,\ell,\mu+1}^m(\eta, \delta; \varphi, \psi) \subset C_{\lambda,\ell,\mu}^m(\eta, \delta; \varphi, \psi). \]

Let \(f \in C_{\lambda,\ell,\mu+1}^m(\eta, \delta; \varphi, \psi) \). Then, in view of the definition of the class \(C_{\lambda,\ell,\mu+1}^m(\eta, \delta; \varphi, \psi) \), there exists a function \(g \in S_{\lambda,\ell,\mu+1}^m(\eta; \varphi) \) such that

\[\frac{1}{1 - \delta} \left(z(I_{\lambda,\ell,\mu+1}^m(\eta; \varphi) - \delta) \right) \prec \psi(z) \quad (z \in U). \]
Now let
\[
p(z) = \frac{1}{1 - \delta} \left(\frac{z(I_{\lambda,\ell,\mu}^m f(z))'}{I_{\lambda,\ell,\mu}^m g(z)} - \delta \right),
\]
where \(p \) is analytic in \(U \) with \(p(0) = 1 \). Using the identity (1.10), we obtain
\[
(2.4) \quad [(1 - \delta)p(z) + \delta]I_{\lambda,\ell,\mu}^m g(z) + (\mu - 1)I_{\lambda,\ell,\mu}^m f(z) = \mu I_{\lambda,\ell,\mu+1}^m f(z).
\]
Differentiating (2.4) with respect to \(z \) and multiplying by \(z \), we have
\[
(2.5) \quad (1 - \delta)zp'(z)I_{\lambda,\ell,\mu}^m (z) + [(1 - \delta)p(z) + \delta]z(I_{\lambda,\ell,\mu}^m g(z))' = \mu z((I_{\lambda,\ell,\mu+1}^m f(z))' - (\mu - 1)z(I_{\lambda,\ell,\mu}^m f(z))').
\]
Since \(g \in S_{\lambda,\ell,\mu+1}^m (\eta; \varphi) \), by Theorem 1, we know that \(g \in S_{\lambda,\ell,\mu}^m (\eta; \varphi) \). Let
\[
q(z) = \frac{1}{1 - \eta} \left(\frac{z(I_{\lambda,\ell,\mu}^m g(z))'}{I_{\lambda,\ell,\mu}^m g(z)} - \eta \right).
\]
Then, using the identity (1.10) once again, we obtain
\[
(2.6) \quad \mu \frac{I_{\lambda,\ell,\mu+1}^m f(z)}{I_{\lambda,\ell,\mu}^m g(z)} = (1 - \eta)q(z) + \eta + (\mu - 1).
\]
From (2.5) and (2.6), we have
\[
\frac{1}{1 - \delta} \left(\frac{z(I_{\lambda,\ell,\mu+1}^m f(z))'}{I_{\lambda,\ell,\mu+1}^m g(z)} - \delta \right) = p(z) + \frac{zp'(z)}{(1 - \eta)q(z) + \eta + (\mu - 1)}.
\]
Since \(0 \leq \eta < 1 \), \(\mu \geq 1 \) and \(q < \varphi \) in \(U \),
\[
\text{Re} \left\{ (1 - \eta)q(z) + \eta + \mu - 1 \right\} > 0
\]
\((z \in U) \). Hence applying Lemma 2, we can show that \(p \prec \psi \), so that \(f \in C_{\lambda,\ell,\mu}^m (\eta; \delta; \varphi; \psi) \).

For the second part, by using the arguments similar to those detailed above with (1.9), we obtain
\[
C_{\lambda,\ell,\mu}^m (\eta; \delta; \varphi; \psi) \subset C_{\lambda,\ell,\mu}^{m+1} (\eta; \delta; \varphi; \psi).
\]
This completes the proof of Theorem 3. \(\square \)

3. Inclusion properties involving the integral operator \(F_c \). In this section, we consider the generalized Libera integral operator \(F_c \) (see [16], [2] and [9]) defined by
\[
(3.1) \quad F_c(f) = F_c(f)(z) = \frac{c + 1}{z} \int_0^z \frac{t^{c-1}f(t)}{a^c} dt
\]
\((c > -1; \ f \in A) \). We first prove the following theorem.

Theorem 4. Let \(c, \lambda \geq 0, \ m \in \mathbb{N}_0, \ \ell \geq 0 \) and \(\mu > 0 \). If \(f \in S_{\lambda,\ell,\mu}^m (\eta; \varphi) (0 \leq \eta < 1; \ \varphi \in S) \), then \(F_c(f) \in S_{\lambda,\ell,\mu}^m (\eta; \varphi) (0 \leq \eta < 1; \ \varphi \in S) \).
Proof. Let $f \in S_{\lambda, \ell, \mu}^m(\eta; \varphi)$ and put

\begin{equation}
 p(z) = \frac{1}{1 - \eta} \left(\frac{z(I_{\lambda, \ell, \mu}^m f_c(z))'}{I_{\lambda, \ell, \mu}^m f_c(z)} - \eta \right),
\end{equation}

where p is analytic in U with $p(0) = 1$. From (3.1), we have

\begin{equation}
 z(I_{\lambda, \ell, \mu}^m f_c(z))' = (c + 1)I_{\lambda, \ell, \mu}^m f(z) - cI_{\lambda, \ell, \mu}^m f_c(f(z)).
\end{equation}

Then, by using (3.2) and (3.3), we have

\begin{equation}
 (c + 1) \frac{I_{\lambda, \ell, \mu}^m f(z)}{I_{\lambda, \ell, \mu}^m f_c(f(z))} = (1 - \eta)p(z) + \eta + c.
\end{equation}

Differentiating (3.4) logarithmically with respect to z and multiplying by z, we have

\begin{equation}
 p(z) + \frac{zp'(z)}{(1 - \eta)p(z) + \eta + c} = \frac{1}{1 - \eta} \left(\frac{z(I_{\lambda, \ell, \mu}^m f(z))'}{I_{\lambda, \ell, \mu}^m f(z)} - \eta \right) \quad (z \in U).
\end{equation}

Hence, by virtue of Lemma 1, we conclude that $p \prec \varphi$ ($z \in U$), which implies that $F_c(f) \in S_{\lambda, \ell, \mu}^m(\eta; \varphi)$. \(\square\)

Next, we derive an inclusion property involving F_c, which is given by the following theorem.

Theorem 5. Let $c, \ell \geq 0$, $m \in N_0$, $\lambda \geq 0$ and $\mu > 0$. If $f \in K_{\lambda, \ell, \mu}^m(\eta; \varphi)$ ($0 \leq \eta < 1; \varphi \in S$), then $F_c(f) \in K_{\lambda, \ell, \mu}^m(\eta; \varphi)$ ($0 \leq \eta < 1; \varphi \in S$).

Proof. By applying Theorem 4, it follows that

\begin{align*}
 f(z) \in K_{\lambda, \ell, \mu}^m(\eta; \varphi) \iff z f'(z) \in S_{\lambda, \ell, \mu}^m(\eta; \varphi) \\
 \Rightarrow F_c(z f'(z)) \in S_{\lambda, \ell, \mu}^m(\eta; \varphi) \\
 \iff z(F_c(f(z))' \in S_{\lambda, \ell, \mu}^m(\eta; \varphi) \\
 \iff F_c(f(z)) \in K_{\lambda, \ell, \mu}^m(\eta; \varphi),
\end{align*}

which proves Theorem 5. \(\square\)

From Theorem 4 and Theorem 5, we have the following corollary.

Corollary 2. Let $c, \ell \geq 0$, $m \in N_0$, $\lambda > 0$ and $\mu > 0$. If $f \in S_{\lambda, \ell, \mu}^m(\eta; A, B; \alpha)$ (or $K_{\lambda, \ell, \mu}^m(\eta; A, B; \alpha)$) ($0 \leq \eta < 1; -1 \leq B < A \leq 1; 0 < \alpha \leq 1$), then $F_c(f)$ belongs to the class $S_{\lambda, \ell, \mu}^m(\eta; A, B; \alpha)$ (or $K_{\lambda, \ell, \mu}^m(\eta; A, B; \alpha)$) ($0 \leq \eta < 1; -1 \leq B < A \leq 1; 0 < \alpha \leq 1$).

Finally, we prove the following theorem.

Theorem 6. Let $c, \ell \geq 0$, $m \in N_0$, $\lambda > 0$ and $\mu > 0$. If $f \in C_{\lambda, \ell, \mu}^m(\eta; \delta; \varphi; \psi)$ ($0 \leq \eta; \delta < 1; \varphi, \psi \in S$), then $F_c(f) \in C_{\lambda, \ell, \mu}^m(\eta; \delta; \varphi; \psi)$ ($0 \leq \eta; \delta < 1; \varphi, \psi \in S$).
Proof. Let \(f \in C^m_{\lambda,\ell,\mu}(\eta; \delta; \varphi; \psi) \). Then, in view of the definition of the class \(C^m_{\lambda,\ell,\mu}(\eta; \delta; \varphi; \psi) \), there exists a function \(g \in S^m_{\lambda,\ell,\mu}(\eta; \varphi) \) such that

\[
\frac{1}{1 - \delta} \left(\frac{z(I^m_{\lambda,\ell,\mu}f(z))'}{I^m_{\lambda,\ell,\mu}g(z)} - \delta \right) \prec \psi(z) \quad (z \in U).
\]

Thus, we put

\[
p(z) = \frac{1}{1 - \delta} \left(\frac{z(I^m_{\lambda,\ell,\mu}F_c(f)(z))'}{I^m_{\lambda,\ell,\mu}F_c(g)(z)} - \delta \right),
\]

where \(p \) is analytic in \(U \) with \(p(0) = 1 \). Since \(g \in S^m_{\lambda,\ell,\mu}(\eta; \varphi) \), we see from Theorem 4 that \(F_c(g) \in S^m_{\lambda,\ell,\mu}(\eta; \varphi) \). Using (3.3), we have

\[
[(1 - \delta)p(z) + \delta] I^m_{\lambda,\ell,\mu}F_c(g)(z) + cI^m_{\lambda,\ell,\mu}F_c(f)(z) = (c + 1)I^m_{\lambda,\ell,\mu}f(z).
\]

Then, by a simple calculations, we get

\[
(c + 1) \frac{z(I^m_{\lambda,\ell,\mu}f(z))'}{I^m_{\lambda,\ell,\mu}F_c(g)(z)} = [(1 - \delta)p(z) + \delta] [(1 - \eta)q(z) + \eta + c] + (1 - \delta)zp'(z),
\]

where

\[
q(z) = \frac{1}{1 - \eta} \left(\frac{z(I^m_{\lambda,\ell,\mu}F_c(g)(z))'}{I^m_{\lambda,\ell,\mu}F_c(g)(z)} - \eta \right).
\]

Hence, we have

\[
\frac{1}{1 - \delta} \left(\frac{z(I^m_{\lambda,\ell,\mu}f(z))'}{I^m_{\lambda,\ell,\mu}g(z)} - \delta \right) = p(z) + \frac{zp'(z)}{(1 - \eta)q(z) + \eta + c}.
\]

The remaining part of the proof of Theorem 6 is similar to that of Theorem 3 and so we omit it.

Acknowledgments. The authors thank the referees for their valuable suggestions to improve the paper.

References

M. K. Aouf
Mansoura University
Mansoura 35516
Egypt
email: mkaouf127@yahoo.com

R. M. El-Ashwah
Mansoura University
Mansoura 35516
Egypt
email: r_elashwah@yahoo.com

Received November 1, 2008